By Topic

3D part segmentation using simulated electrical charge distributions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kenong Wu ; Integrated Surgical Syst., Sacramento, CA, USA ; Levine, M.D.

A novel approach to 3D part segmentation is presented. It is a well-known physical fact that electrical charge on the surface of a conductor tends to accumulate at a sharp convexity and vanish at a sharp concavity. Thus, object part boundaries, which are usually denoted by a sharp surface concavity, can be detected by simulating the electrical charge density over the object surface and locating surface points which exhibit local charge density minima. Beginning with single- or multiview range data of a 3D object, we simulate the charge density distribution over an object's surface which has been tessellated by a triangular mesh. We detect the deep surface concavities by tracing local charge density minima and then decompose the object into parts at these points. The charge density computation does not require an assumption on surface smoothness and uses weighted global data to produce robust local surface features for part segmentation

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:19 ,  Issue: 11 )