By Topic

Multiobjective genetic algorithm-based method for job shop scheduling problem: Machines under preventive and corrective maintenance activities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Harrath, Y. ; Dept. of Comput. Sci., Univ. of Bahrain, Sakhir, Bahrain ; Kaabi, J. ; Ben Ali, M. ; Sassi, M.

In this paper we consider a multiobjective job shop scheduling problem. The machines are subject to availability constraints that are due to preventive maintenance, machine breakdowns or tool replacement. Two optimization criteria were considered; the makespan for the jobs and the total cost for the maintenance activities. The job shop scheduling problem without considering the availability constraints is known to be NP-Hard. Because of the complexity of the problem, we develop a two-phase genetic algorithm based heuristic to solve the addressed problem. A set of pareto optimal solutions is obtained in the first phase containing relatively large number of solutions. This makes difficult the choice of the most suitable solution. For this reason the second phase will filter the obtained set so as to reduce its size. Performance of the proposed heuristic is evaluated through computational experiments on the benchmark of Muth & Thomson mt06 of 6×6 and 10 different sizes benchmarks of Lawrence. The results show that the heuristic gives solutions close to those obtained in the classic job shop scheduling problem.

Published in:

Data Mining and Optimization (DMO), 2012 4th Conference on

Date of Conference:

2-4 Sept. 2012