By Topic

Topic detections in Arabic Dark websites using improved Vector Space Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hanan M. Alghamdi ; Fac. of Comput. Sci. & Inf. Syst., Univ. Teknol. Malaysia, Skudai, Malaysia ; Ali Selamat

Terrorist group's forums remain a threat for all web users. It stills need to be inspired with algorithms to detect the informative contents. In this paper, we investigate most discussed topics on Arabic Dark Web forums. Arabic Textual contents extracted from selected Arabic Dark Web forums. Vector Space Model (VSM) used as text representation with two different term weighing schemas, Term Frequency (TF) and Term Frequency - Inverse Document Frequency (TF-IDF). Pre-processing phase plays a significant role in processing extracted terms. That consists of filtering, tokenization and stemming. Stemming step is based on proposed stemmer without a root dictionary. Using one of the well-know clustering algorithm k-means to cluster of the terms. The experimental results were presented and showed the most shared terms between the selected forums.

Published in:

2012 4th Conference on Data Mining and Optimization (DMO)

Date of Conference:

2-4 Sept. 2012