Cart (Loading....) | Create Account
Close category search window

Growth and ferromagnetic resonance properties of nanometer-thick yttrium iron garnet films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Sun, Yiyan ; Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA ; Song, Young-Yeal ; Chang, Houchen ; Kabatek, Michael
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Growth of nm-thick yttrium iron garnet films and ferromagnetic resonance (FMR) linewidth properties in the films are reported. The films were grown on gadolinium gallium garnet substrates by pulsed laser deposition (PLD). Films in the 5–35 nm thickness range showed a (111) orientation and a surface roughness between 0.1 and 0.3 nm. The 10 nm films showed a 10 GHz FMR linewidth of about 6 Oe and a damping constant of 3.2 × 10-4. The FMR linewidth increases with both the surface roughness and the surface Fe deficiency. Thicker films exhibit a smaller FMR linewidth and a lower damping constant.

Published in:

Applied Physics Letters  (Volume:101 ,  Issue: 15 )

Date of Publication:

Oct 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.