By Topic

Novel optical fiber code-division multiple access networks supporting real-time multichannel variable-bit-rate (VBR) video distributions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jian-Guo Zhang ; Sch. of Adv. Technol., Asian Inst. of Technol., Bangkok, Thailand

we design novel code-division multiple access (CDMA) networks which use strict optical orthogonal codes (OOCs) and incoherent optical processing for multichannel variable-bit-rate (VBR) video broadcasting. The proposed techniques possess the characteristics of fast access tunability and bit-rate flexibility. This in turn can facilitate real-time VBR video distributions for entertainment HDTV applications. Compared with conventional OOCs, the use of strict OOCs can ensure both auto- and cross-correlation constraints to be minimum (i.e., “1”) for multichannel VBR video broadcasting and high-speed photonic switching applications. A parallel-serial hybrid architecture for all-optical tunable decoders (or encoders) is also presented to strict OOCs, which has a fast reconfiguration time to support real-time video applications in high-speed optical fiber CDMA networks

Published in:

IEEE Transactions on Broadcasting  (Volume:43 ,  Issue: 3 )