By Topic

Influence of Rotation on Rotor Fluid and Temperature Distribution in a Large Air-Cooled Hydrogenerator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Li Weili ; Beijing Jiaotong University, Beijing, China ; Guan Chunwei ; Chen Yuhong

In the premise of the measured circulation flow rate, the conjugate heat transfer in turbulent flow within one coupled rotor model of a 250-MW hydrogenerator was calculated. The flow rate changes of the fluid in the support, yoke ducts, pole gap, and the air gap between stator and rotor were researched using the finite volume method, also their effects on the operating rotor temperature. The analysis shows that it can accurately simulate the fluid field of the rotor ventilation system, which will provide theory basis for the design and improvement of the generator ventilation system. The calculated average temperature of the excitation winding is compared with its measured value, and the error is less than 1%. Thus, the results can be used to simulate temperatures of the rotor which cannot be easily measured.

Published in:

IEEE Transactions on Energy Conversion  (Volume:28 ,  Issue: 1 )