Cart (Loading....) | Create Account
Close category search window
 

Extracting White Noise Statistics in GPS Coordinate Time Series

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Montillet, J.-P. ; Res. Sch. of Earth Sci., Australian Nat. Univ., Canberra, ACT, Australia ; Tregoning, P. ; McClusky, S. ; Yu, K.

The noise in GPS coordinate time series is known to follow a power-law noise model with different components (white noise, flicker noise, and random walk). This work proposes an algorithm to estimate the white noise statistics, through the decomposition of the GPS coordinate time series into a sequence of sub time series using the empirical mode decomposition algorithm. The proposed algorithm estimates the Hurst parameter for each sub time series and then selects the sub time series related to the white noise based on the Hurst parameter criterion. Both simulated GPS coordinate time series and real data are employed to test this new method; the results are compared to those of the standard (CATS software) maximum-likelihood (ML) estimator approach. The results demonstrate that this proposed algorithm has very low computational complexity and can be more than 100 times faster than the CATS ML method, at the cost of a moderate increase of the uncertainty (~5%) of the white noise amplitude. Reliable white noise statistics are useful for a range of applications including improving the filtering of GPS time series, checking the validity of estimated coseismic offsets, and estimating unbiased uncertainties of site velocities. The low complexity and computational efficiency of the algorithm can greatly speed up the processing of geodetic time series.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:10 ,  Issue: 3 )

Date of Publication:

May 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.