By Topic

A High-Performance Single-Photon Avalanche Diode in 130-nm CMOS Imaging Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Webster, E.A.G. ; Sch. of Eng., Univ. of Edinburgh, Edinburgh, UK ; Grant, L.A. ; Henderson, R.K.

A single-photon avalanche diode (SPAD) is reported in a 130-nm CMOS imaging process which achieves a peak photon detection efficiency (PDE) of ≈72% at 560 nm with >; 40% PDE from 410 to 760 nm. This is achieved by eliminating junction isolation, utilizing dielectric stack optimizations designed for CMOS imaging, and operating at high bias enabled by ac coupling. The 8-μm-diameter device achieves a low median dark count rate of 18 Hz at 2-V excess bias (VEB), a <; 60-ps FWHM timing resolution at 654 nm from VEB = 6 V to VEB = 12 V, and a <; 4% after-pulsing probability. This represents performance which is comparable to fully customized discrete SPADs.

Published in:

Electron Device Letters, IEEE  (Volume:33 ,  Issue: 11 )