Cart (Loading....) | Create Account
Close category search window

Investigation of Low-Frequency Noise Behavior After Hot-Carrier Stress in an n-Channel Junctionless Nanowire MOSFET

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Chan-Hoon Park ; Dept. of Electr. Eng., Pohang Univ. of Sci. & Technol., Pohang, South Korea ; Myung-Dong Ko ; Ki-Hyun Kim ; Sang-Hyun Lee
more authors

The dc performance and low-frequency (LF) noise behaviors after hot-carrier (HC)-induced stress were compared for a junctionless nanowire transistor (JNT) and an inversion-mode nanowire transistor (INT). Less dc degradation was found in the JNT than in the INT. Due to the low lateral peak electric field (E-field) and electrons traveling through the center of the nanowire, the LF noise increment after HC-induced stress in the JNT is much lower than that in the INT. Furthermore, due to the higher lateral peak E-field located under the gate and the conduction path that occurs near the surface, the LF noise of the INT is very sensitive to HC stress.

Published in:

Electron Device Letters, IEEE  (Volume:33 ,  Issue: 11 )

Date of Publication:

Nov. 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.