Cart (Loading....) | Create Account
Close category search window
 

Orthogonal Positive-Bevel Termination for Chip-Size SiC Reverse Blocking Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xing Huang ; Future Renewable Electr. Energy Delivery & Manage. Syst. Center, North Carolina State Univ., Raleigh, NC, USA ; Van Brunt, E. ; Baliga, B.Jayant ; Huang, A.Q.

Symmetric blocking power semiconductor switches require positive-bevel edge terminations for the reverse blocking p-n junction. This technique has been extensively applied to silicon wafer-size devices with high current ratings. In this letter, we propose and experimentally demonstrate, for the first time, that an orthogonal positive-bevel termination can be used for the reverse blocking junction of chip-size SiC devices. The edge termination was formed by sawing the SiC wafer with a V-shaped dicing blade. For proof of concept, our experiment was done on a SiC wafer with a 15.8-μm 6.1 × 1015 cm-3 p-type epitaxial layer grown on an N+ substrate. The positive-bevel termination resulted in a breakdown voltage of over 1000 V as limited by reach-through breakdown even without removal of damage from the sawing. The leakage current was found to be reduced by two orders of magnitude after reactive ion etching of the SiC bevel surface to remove the sawing damage.

Published in:

Electron Device Letters, IEEE  (Volume:33 ,  Issue: 11 )

Date of Publication:

Nov. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.