By Topic

On the Radiation Profiles and Light Extraction of Vertical LEDs With Hybrid Nanopattern and Truncated Microdome Surface Textures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yu-Ting Wang ; Graduate Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, Taipei City, Taiwan ; Yen Chou ; Liang-Yi Chen ; Yu-Feng Yin
more authors

The n-side-up vertical light emitting diodes (LEDs) have the advantage of carving the surface of the thick n-GaN layer to improve light extraction and to adjust radiation profiles. In this paper, a two-step surface patterning is employed with the focus on understanding angular light diffractions from both nanopatterns and truncated microdomes. Light output enhancement of the LEDs with hybrid surface texturing is investigated experimentally and theoretically. The results suggest that light is diffracted through the grating effect and curved sidewalls when interacting with truncated microdomes, resulting in a maximum enhancement 64° away from the normal surface. On the other hand, nearly omni-directional enhancement was found from the randomly scattered nanopatterns. As for the hybrid structure, since guided modes in the semiconductor layers are diffracted by either nanopatterns or microdomes, the percentage increase of light extraction from the hybrid structure is approximately the linear superposition of both types of surface textures. The results suggest an interesting guideline to improve LED light output and to adjust angular radiation with the mutlistep surface patterning.

Published in:

IEEE Journal of Quantum Electronics  (Volume:49 ,  Issue: 1 )