By Topic

An approach to localization scheme of wireless sensor networks based on artificial neural networks and Genetic Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chagas, S.H. ; UFSM PPGI, Santa Maria, Brazil ; Martins, J.B. ; de Oliveira, L.L.

Localization of nodes in wireless sensor networks without the use of GPS is important for applications such as military surveillance, environmental monitoring, robotics, domotics, animal tracking, and many others. Low cost and energy efficient sensors require methods that compute their position using indirect information such as RSSI (Received Signal Strength Indicator). This work presents an artificial neural networks (ANNs) approach to localization in wireless sensor networks through the adjustment of the ANNs structures using Genetic Algorithms. A population of feedforward ANNs containing their structure in a genetic code is evolved during 20 generations. Each individual is evaluated through the training of the artificial neural network and further calculation of its root mean square error for all the testing set. The RSSI measurements were used as the artificial neural networks inputs to localize the nodes. The approach was tested using the MATLAB-based Probabilistic Wireless Network Simulator (Prowler) to collect the artificial neural networks input data, under simulated static indoor network environment of 26×26 meters with 8 anchor nodes, i.e., nodes with awareness of their positions. The MATLAB's genetic algorithms and artificial neural networks toolboxes were used. Results using the best artificial neural network structure found after optimization had a root mean square error of 0.41 meters, a maximum error of 1.07 meters and a minimum error of 0.014 meters.

Published in:

New Circuits and Systems Conference (NEWCAS), 2012 IEEE 10th International

Date of Conference:

17-20 June 2012