Cart (Loading....) | Create Account
Close category search window
 

Minimum queue length load-balancing in planned Wireless Mesh Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Capdehourat, G. ; Inst. de Ing. Electr., Univ. de la Republica, Montevideo, Uruguay ; Larroca, F. ; Belzarena, P.

Wireless Mesh Networks (WMNS) have emerged in the last years as a cost-efficient alternative to traditional wired access networks. In order to fully exploit the intrinsically scarce resources WMNS possess, the use of dynamic routing has been proposed. We argue instead in favour of separating routing from forwarding (i.e. à la MPLS) and implementing a dynamic load-balancing scheme that forwards incoming packets along several pre-established paths in order to minimize a certain congestion function. In this paper, we consider a particular but very important scenario: a planned WMN where all bidirectional point-to-point links do not interfere with each other. Due to its versatility and simplicity, we use the sum over all links of the mean queue length as congestion function. A method to learn this function from measurements is presented, whereas simulations illustrate the framework.

Published in:

Wireless Communication Systems (ISWCS), 2012 International Symposium on

Date of Conference:

28-31 Aug. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.