By Topic

Scalp EEG-Based Discrimination of Cognitive Deficits After Traumatic Brain Injury Using Event-Related Tsallis Entropy Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
McBride, J. ; Dept. of Mech., Aerosp., & Biomed. Eng., Univ. of Tennessee, Knoxville, TN, USA ; Zhao, X. ; Nichols, T. ; Vagnini, V.
more authors

Traumatic brain injury (TBI) is the leading cause of death and disability in children and adolescents in the U.S. This is a pilot study, which explores the discrimination of chronic TBI from normal controls using scalp EEG during a memory task. Tsallis entropies are computed for responses during an old-new memory recognition task. A support vector machine model is constructed to discriminate between normal and moderate/severe TBI individuals using Tsallis entropies as features. Numerical analyses of 30 records (15 normal and 15 TBI) show a maximum discrimination accuracy of 93% (p-value = 7.8557E-5) using four features. These results suggest the potential of scalp EEG as an efficacious method for noninvasive diagnosis of TBI.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:60 ,  Issue: 1 )