By Topic

A 190- \mu\hbox {W} zero-IF GFSK Demodulator With a 4-b Phase-Domain ADC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Masuch, J. ; Inst. of Microelectron. of Seville, Seville, Spain ; Delgado-Restituto, M.

This paper presents a zero-IF Gaussian frequency-shift keying (GFSK) demodulator based on a phase-domain analog-to-digital converter (Ph-ADC) which directly quantizes the phase information of the received complex baseband signal. The Ph-ADC linearly combines the in-phase and quadrature parts of the incoming signal, and the generated phase-shifted versions are fed to comparators to detect the zero-crossings and build a 4-b digital representation of the signal phase. Seeking for a low-area and low-power consumption realization, our proposal employs a resistor-less scheme which performs phase rotations in current domain. Together with the Ph-ADC, the fully integrated GFSK demodulator also includes a channel-filtering programmable gain amplifier and a symbol decision block. Altogether, the demodulator occupies 0.14 mm2 in a 0.13- μm CMOS technology with a total power consumption of 190 μW from a 1-V supply. For a data rate of 1 Mbps and 0.5 modulation depth, the GFSK demodulator requires an EB/N0 of 14.8 dB for a bit error rate of 0.1% considering a flicker noise corner of 150 kHz, obtains a dynamic range of 74 dB, and is able to tolerate carrier frequency offsets of ±170 kHz. This performance safely complies with the requirements of the Bluetooth Low Energy (BLE) standard.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:47 ,  Issue: 11 )