Cart (Loading....) | Create Account
Close category search window
 

Social Connections in User-Generated Content Video Systems: Analysis and Recommendation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhenyu Li ; Inst. of Comput. Technol., Beijing, China ; Jiali Lin ; Salamatian, K. ; Gaogang Xie

User-generated content (UGC) video systems by definition heavily depend on the input of their community of users and their social interactions for video diffusion and opinion sharing. Nevertheless, we show in this paper, through measurement and analysis of YouKu, the most popular UGC video system in China, that the social connectivity of its users is very low. These observations are consistent with what was reported about YouTube in previous works. As a UGC system can achieve a larger audience through improved connectivity, our findings motivate us to propose a mean to enhance the users' connectivity by taking benefit of friend recommendation. To this end, we assess two similarity metrics based on users' interests that are derived from their uploads and favorites tagging of videos, to evaluate the interest similarity between friends. The results consistently show that friends share to a great extent common interests. Two friend recommendation algorithms are then proposed. The algorithms use public information provided by users to suggest potential friends with similar interests as measured by the similarity metrics. Experiments on our gathered YouKu dataset demonstrate that the social connectivity can be greatly enhanced by our friend proposition set and that users can access a larger set of interesting videos through the recommendations.

Published in:

Network and Service Management, IEEE Transactions on  (Volume:10 ,  Issue: 1 )

Date of Publication:

March 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.