By Topic

Spatio-temporal LBP Based Moving Object Segmentation in Compressed Domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jianwei Yang ; Sch. of Inf. & Commun. Eng., Beijing Univ. of Posts & Telecommun., Beijing, China ; Shizheng Wang ; Zhen Lei ; Yanyun Zhao
more authors

With the increasing amount of surveillance data, moving object segmentation in the compressed domain has drawn broad attention from both academy and industry. In this paper, we propose a novel moving object segmentation method towards H.264 compressed surveillance videos. First, the motion vectors (MV) are accumulated and filtered to achieve reliable motion information. Second, considering the spatial and temporal correlations among adjacent blocks, spatio-temporal Local Binary Pattern (LBP) features of MVs are extracted to obtain coarse and initial object regions. Finally, a coarse-to-fine segmentation algorithm of boundary modification is conducted based on the DCT coefficients. The experimental results validate that the proposed method not only can extract fairly accurate objects in compressed video, but also has a relatively low computational complexity.

Published in:

Advanced Video and Signal-Based Surveillance (AVSS), 2012 IEEE Ninth International Conference on

Date of Conference:

18-21 Sept. 2012