By Topic

Track maintenance using the SMC-intensity filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Christoph Degen ; SDF Dept., Fraunhofer FKIE, Wachtberg, Germany ; Felix Govaers ; Wolfgang Koch

The so-called lack of memory is an inherent challenge of the probability hypothesis density (PHD) filter and leads to the fact that only targets which rely on a currently available measurement can securely be reported as present in the respective iteration. Yet there is no method presented that enables the sequential Monte Carlo (SMC) version of the intensity filter (iFilter) to manage failure of measurements. In this paper we develop a procedure and a complete implementation scheme within the SMC-iFilter to detect failure of measurements and to generate so-called pseudo measurements, which are used to estimate the state of targets, belonging to missing measurements. To assess the developed method with respect to accuracy a numerical study is carried out, using a simulation of a linear multi-object scenario.

Published in:

Sensor Data Fusion: Trends, Solutions, Applications (SDF), 2012 Workshop on

Date of Conference:

4-6 Sept. 2012