By Topic

Internet Traffic Classification by Aggregating Correlated Naive Bayes Predictions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jun Zhang ; Sch. of Inf. Technol., Deakin Univ., Melbourne, VIC, Australia ; Chao Chen ; Yang Xiang ; Wanlei Zhou
more authors

This paper presents a novel traffic classification scheme to improve classification performance when few training data are available. In the proposed scheme, traffic flows are described using the discretized statistical features and flow correlation information is modeled by bag-of-flow (BoF). We solve the BoF-based traffic classification in a classifier combination framework and theoretically analyze the performance benefit. Furthermore, a new BoF-based traffic classification method is proposed to aggregate the naive Bayes (NB) predictions of the correlated flows. We also present an analysis on prediction error sensitivity of the aggregation strategies. Finally, a large number of experiments are carried out on two large-scale real-world traffic datasets to evaluate the proposed scheme. The experimental results show that the proposed scheme can achieve much better classification performance than existing state-of-the-art traffic classification methods.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:8 ,  Issue: 1 )