By Topic

Robust Hashing for Image Authentication Using Zernike Moments and Local Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yan Zhao ; Sch. of Commun. & Inf. Eng., Shanghai Univ., Shanghai, China ; Shuozhong Wang ; Xinpeng Zhang ; Heng Yao

A robust hashing method is developed for detecting image forgery including removal, insertion, and replacement of objects, and abnormal color modification, and for locating the forged area. Both global and local features are used in forming the hash sequence. The global features are based on Zernike moments representing luminance and chrominance characteristics of the image as a whole. The local features include position and texture information of salient regions in the image. Secret keys are introduced in feature extraction and hash construction. While being robust against content-preserving image processing, the hash is sensitive to malicious tampering and, therefore, applicable to image authentication. The hash of a test image is compared with that of a reference image. When the hash distance is greater than a threshold τ1 and less than τ2, the received image is judged as a fake. By decomposing the hashes, the type of image forgery and location of forged areas can be determined. Probability of collision between hashes of different images approaches zero. Experimental results are presented to show effectiveness of the method.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:8 ,  Issue: 1 )