By Topic

A 28-Gb/s 4-Tap FFE/15-Tap DFE Serial Link Transceiver in 32-nm SOI CMOS Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

26 Author(s)
Bulzacchelli, J.F. ; IBM T. J. Watson Res. Center, Yorktown Heights, NY, USA ; Menolfi, C. ; Beukema, T.J. ; Storaska, D.W.
more authors

This paper presents a 28-Gb/s transceiver in 32-nm SOI CMOS technology for chip-to-chip communications over high-loss electrical channels such as backplanes. The equalization needed for such applications is provided by a 4-tap baud-spaced feed-forward equalizer (FFE) in the transmitter and a two-stage peaking amplifier and 15-tap decision-feedback equalizer (DFE) in the receiver. The transmitter employs a source-series terminated (SST) driver topology which doubles the speed of existing half-rate designs. The high-frequency boost provided by the peaking amplifier is enhanced by adopting a structure with capacitively coupled parallel input stages and active feedback. A capacitive level-shifting technique is introduced in the half-rate DFE which allows a single current-integrating summer to drive the four parallel paths used for speculating the first two DFE taps. Error-free signaling at 28 Gb/s is demonstrated with the transceiver over a channel with 35 dB loss at half-baud frequency. In a four-port core configuration, the power consumption at 28 Gb/s is 693 mW/lane.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:47 ,  Issue: 12 )