Cart (Loading....) | Create Account
Close category search window
 

Flexible and Compact AMC Based Antenna for Telemedicine Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Raad, H.R. ; Dept. of Eng. Sci., Sonoma State Univ., Rohnert Park, CA, USA ; Abbosh, A.I. ; Al-Rizzo, H.M. ; Rucker, D.G.

We present a flexible, compact antenna system intended for telemedicine applications. The design is based on an M-shaped printed monopole antenna operating in the Industrial, Scientific, and Medical (ISM) 2.45 GHz band integrated with a miniaturized slotted Jerusalem Cross (JC) Artificial Magnetic Conductor (AMC) ground plane. The AMC ground plane is utilized to isolate the user's body from undesired electromagnetic radiation in addition to minimizing the antenna's impedance mismatch caused by the proximity to human tissues. Specific Absorption Rate (SAR) is analyzed using a numerical human body model (HUGO) to assess the feasibility of the proposed design. The antenna expresses 18% impedance bandwidth; moreover, the inclusion of the AMC ground plane increases the front to back ratio by 8 dB, provides 3.7 dB increase in gain, in addition to 64% reduction in SAR. Experimental and numerical results show that the radiation characteristics, impedance matching, and SAR values of the proposed design are significantly improved compared to conventional monopole and dipole antennas. Furthermore, it offers a compact and flexible solution which makes it a good candidate for the wearable telemedicine application.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:61 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.