By Topic

The effect of electroactive interlayer on the ferroelectric properties in poly(vinylidene fluoride-trifluoroethylene) copolymer ultrathin films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Zhang, Xiuli ; Department of Physics, East China University of Science and Technology, Shanghai 200237, China ; Hou, Ying ; Zhang, Yuan ; Lv, Zhaoyue
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4757936 

A series of ferroelectric polarization reversal measurements have been conducted on spin-coated ultrathin poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer films sandwiched with different electroactive materials between P(VDF-TrFE) and metal electrodes. Three types of electroactive interlayers, including highly polarizable material copper-phthalocyanine (CuPc), electron conductive polyethylene dioxythiophene/poly(styrene sulfonate acid), and ion (proton) conductive poly (vinyl phosphonic) acid, have been employed in our experiment. In addition, the ferroelectric film with CuPc exhibits larger remnant polarization and the enhancement of fatigue resistance although higher drive voltage and more switching time can be observed, which differs from the samples with electron and proton conductors as interlayers. The further analysis shows that this may be attributed to higher dielectric constant of CuPc than that of P(VDF-TrFE) layer. These results suggest that three types of interlayers can lead to a large improvement of ferroelectric switching, which is promising for potential applications.

Published in:

Journal of Applied Physics  (Volume:112 ,  Issue: 7 )