By Topic

Feature Selection and Classification for Gene Expression Data Using Evolutionary Computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Banka, H. ; Dept. of Comput. Sci. & Eng., Indian Sch. of Mines, Dhanbad, India ; Dara, S.

An evolutionary rough feature selection algorithm is proposed for classifying gene expression patterns. Since the data typically consist of a large number of redundant features, an initial redundancy reduction of the attributes is done to enable faster convergence. Rough set theory is employed to generate the distinction table that enable PSO to find reducts, which represent the minimal sets of non-redundant features capable of discerning between all objects. The effectiveness of the algorithm is demonstrated on three benchmark cancer datasets viz. Colon, Lymphoma and Leukemia using MOGA.

Published in:

Database and Expert Systems Applications (DEXA), 2012 23rd International Workshop on

Date of Conference:

3-7 Sept. 2012