By Topic

Parallel Scalability and Efficiency of HEVC Parallelization Approaches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Chi Ching Chi ; Embedded Syst. Archit. Group, Tech. Univ. Berlin, Berlin, Germany ; Alvarez-Mesa, M. ; Juurlink, B. ; Clare, G.
more authors

Unlike H.264/advanced video coding, where parallelism was an afterthought, High Efficiency Video Coding currently contains several proposals aimed at making it more parallel-friendly. A performance comparison of the different proposals, however, has not yet been performed. In this paper, we will fill this gap by presenting efficient implementations of the most promising parallelization proposals, namely tiles and wavefront parallel processing (WPP). In addition, we present a novel approach called overlapped wavefront (OWF), which achieves higher performance and efficiency than tiles and WPP. Experiments conducted on a 12-core system running at 3.33 GHz show that our implementations achieve average speedups, for 4k sequences, of 8.7, 9.3, and 10.7 for WPP, tiles, and OWF, respectively.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:22 ,  Issue: 12 )