Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Particle Filtering for Acoustic Source Tracking in Impulsive Noise With Alpha-Stable Process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xionghu Zhong ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Premkumar, A.B. ; Madhukumar, A.S.

NonGaussian impulsive noises distort the source signal and cause problems for direction of arrival (DOA) estimation of an acoustic source. In this paper, a Bayesian framework and its particle filtering (PF) implementation for DOA tracking in the presence of complex symmetric alpha-stable noise process are developed. A constant velocity model is employed to model the source dynamics, and spatial spectra are exploited to formulate a pseudo likelihood of particles. Since the second-order statistics of alpha-stable processes do not exist, the fractional lower order moment matrix of the received data is used to replace the covariance matrix in calculating the spatial spectra. The noise usually spreads and distorts the mainlobe of the likelihood function and the particles cannot be weighted accurately. Hence, the likelihood function is exponentially weighted to emphasize the particles in a high likelihood area and thus enhance the resampling efficiency. The performance of the proposed tracking algorithm is extensively studied under simulated alpha-stable noise environments. The results show that the proposed algorithm significantly outperforms the existing PF tracking approach and the traditional localization approaches in DOA estimation.

Published in:

Sensors Journal, IEEE  (Volume:13 ,  Issue: 2 )