Cart (Loading....) | Create Account
Close category search window
 

Stacking-Based Visualization of Trajectory Attribute Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Visualizing trajectory attribute data is challenging because it involves showing the trajectories in their spatio-temporal context as well as the attribute values associated with the individual points of trajectories. Previous work on trajectory visualization addresses selected aspects of this problem, but not all of them. We present a novel approach to visualizing trajectory attribute data. Our solution covers space, time, and attribute values. Based on an analysis of relevant visualization tasks, we designed the visualization solution around the principle of stacking trajectory bands. The core of our approach is a hybrid 2D/3D display. A 2D map serves as a reference for the spatial context, and the trajectories are visualized as stacked 3D trajectory bands along which attribute values are encoded by color. Time is integrated through appropriate ordering of bands and through a dynamic query mechanism that feeds temporally aggregated information to a circular time display. An additional 2D time graph shows temporal information in full detail by stacking 2D trajectory bands. Our solution is equipped with analytical and interactive mechanisms for selecting and ordering of trajectories, and adjusting the color mapping, as well as coordinated highlighting and dedicated 3D navigation. We demonstrate the usefulness of our novel visualization by three examples related to radiation surveillance, traffic analysis, and maritime navigation. User feedback obtained in a small experiment indicates that our hybrid 2D/3D solution can be operated quite well.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:18 ,  Issue: 12 )

Date of Publication:

Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.