Cart (Loading....) | Create Account
Close category search window
 

Graphical Tests for Power Comparison of Competing Designs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hofmann, H. ; Stat., Iowa State Univ., Ames, IA, USA ; Follett, L. ; Majumder, M. ; Cook, D.

Lineups [4, 28] have been established as tools for visual testing similar to standard statistical inference tests, allowing us to evaluate the validity of graphical findings in an objective manner. In simulation studies [12] lineups have been shown as being efficient: the power of visual tests is comparable to classical tests while being much less stringent in terms of distributional assumptions made. This makes lineups versatile, yet powerful, tools in situations where conditions for regular statistical tests are not or cannot be met. In this paper we introduce lineups as a tool for evaluating the power of competing graphical designs. We highlight some of the theoretical properties and then show results from two studies evaluating competing designs: both studies are designed to go to the limits of our perceptual abilities to highlight differences between designs. We use both accuracy and speed of evaluation as measures of a successful design. The first study compares the choice of coordinate system: polar versus cartesian coordinates. The results show strong support in favor of cartesian coordinates in finding fast and accurate answers to spotting patterns. The second study is aimed at finding shift differences between distributions. Both studies are motivated by data problems that we have recently encountered, and explore using simulated data to evaluate the plot designs under controlled conditions. Amazon Mechanical Turk (MTurk) is used to conduct the studies. The lineups provide an effective mechanism for objectively evaluating plot designs.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:18 ,  Issue: 12 )

Date of Publication:

Dec. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.