By Topic

On the Interpolation of Data with Normally Distributed Uncertainty for Visualization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Steven Schlegel ; University of Leipzig ; Nico Korn ; Gerik Scheuermann

In many fields of science or engineering, we are confronted with uncertain data. For that reason, the visualization of uncertainty received a lot of attention, especially in recent years. In the majority of cases, Gaussian distributions are used to describe uncertain behavior, because they are able to model many phenomena encountered in science. Therefore, in most applications uncertain data is (or is assumed to be) Gaussian distributed. If such uncertain data is given on fixed positions, the question of interpolation arises for many visualization approaches. In this paper, we analyze the effects of the usual linear interpolation schemes for visualization of Gaussian distributed data. In addition, we demonstrate that methods known in geostatistics and machine learning have favorable properties for visualization purposes in this case.

Published in:

IEEE Transactions on Visualization and Computer Graphics  (Volume:18 ,  Issue: 12 )