By Topic

Automatic Detection and Visualization of Qualitative Hemodynamic Characteristics in Cerebral Aneurysms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Gasteiger, R. ; Dept. of Simulation & Graphics, Univ. of Magdeburg, Magdeburg, Germany ; Lehmann, D.J. ; van Pelt, R. ; Janiga, G.
more authors

Cerebral aneurysms are a pathological vessel dilatation that bear a high risk of rupture. For the understanding and evaluation of the risk of rupture, the analysis of hemodynamic information plays an important role. Besides quantitative hemodynamic information, also qualitative flow characteristics, e.g., the inflow jet and impingement zone are correlated with the risk of rupture. However, the assessment of these two characteristics is currently based on an interactive visual investigation of the flow field, obtained by computational fluid dynamics (CFD) or blood flow measurements. We present an automatic and robust detection as well as an expressive visualization of these characteristics. The detection can be used to support a comparison, e.g., of simulation results reflecting different treatment options. Our approach utilizes local streamline properties to formalize the inflow jet and impingement zone. We extract a characteristic seeding curve on the ostium, on which an inflow jet boundary contour is constructed. Based on this boundary contour we identify the impingement zone. Furthermore, we present several visualization techniques to depict both characteristics expressively. Thereby, we consider accuracy and robustness of the extracted characteristics, minimal visual clutter and occlusions. An evaluation with six domain experts confirms that our approach detects both hemodynamic characteristics reasonably.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:18 ,  Issue: 12 )