By Topic

A Data-Driven Approach to Hue-Preserving Color-Blending

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Color mapping and semitransparent layering play an important role in many visualization scenarios, such as information visualization and volume rendering. The combination of color and transparency is still dominated by standard alpha-compositing using the Porter-Duff over operator which can result in false colors with deceiving impact on the visualization. Other more advanced methods have also been proposed, but the problem is still far from being solved. Here we present an alternative to these existing methods specifically devised to avoid false colors and preserve visual depth ordering. Our approach is data driven and follows the recently formulated knowledge-assisted visualization (KAV) paradigm. Preference data, that have been gathered in web-based user surveys, are used to train a support-vector machine model for automatically predicting an optimized hue-preserving blending. We have applied the resulting model to both volume rendering and a specific information visualization technique, illustrative parallel coordinate plots. Comparative renderings show a significant improvement over previous approaches in the sense that false colors are completely removed and important properties such as depth ordering and blending vividness are better preserved. Due to the generality of the defined data-driven blending operator, it can be easily integrated also into other visualization frameworks.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:18 ,  Issue: 12 )