Cart (Loading....) | Create Account
Close category search window
 

X-ray induced Sm3+ to Sm2+ conversion in fluorophosphate and fluoroaluminate glasses for the monitoring of high-doses in microbeam radiation therapy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Vahedi, Shahrzad ; Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A9, Canada ; Okada, Go ; Morrell, Brian ; Muzar, Edward
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.4754564 

Fluorophosphate and fluoroaluminate glasses doped with trivalent samarium were evaluated as sensors of x-ray radiation for microbeam radiation therapy at the Canadian Light Source using the conversion of trivalent Sm3+ to the divalent form Sm2+. Both types of glasses show similar conversion rates and may be used as a linear sensor up to ∼150 Gy and as a nonlinear sensor up to ∼2400 Gy, where saturation is reached. Experiments with a multi-slit collimator show high spatial resolution of the conversion pattern; the pattern was acquired by a confocal fluorescence microscopy technique. The effects of previous x-ray exposure may be erased by annealing at temperatures exceeding the glass transition temperature Tg while annealing at TA < Tg enhances the Sm conversion. This enhancement is explained by a thermally stimulated relaxation of host glass ionic matrix surrounding x-ray induced Sm2+ ions. In addition, some of the Sm3+-doped glasses were codoped with Eu2+-ions but the results show that there is no marked improvement in the conversion efficiency by the introduction of Eu2+.

Published in:

Journal of Applied Physics  (Volume:112 ,  Issue: 7 )

Date of Publication:

Oct 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.