Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Recursive Least-Squares Source Tracking using One Acoustic Vector Sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Awad, M.K. ; Dept. of Electr. & Comput. Eng., Kuwait Univ., Salmiya, Kuwait ; Wong, K.T.

An acoustic vector-sensor (a.k.a. vector-hydrophone) is composed of three acoustic velocity-sensors, plus a collocated pressure-sensor, all collocated in space. The velocity-sensors are identical, but orthogonally oriented, each measuring a different Cartesian component of the three-dimensional particle-velocity field. This acoustic vector-sensor offers an azimuth-elevation response that is invariant with respect to the source's center frequency or bandwidth. This acoustic vector-sensor is adopted here for recursive least-squares (RLS) adaptation, to track a single mobile source, in the absence of any multipath fading and any directional interference. A formula is derived to preset the RLS forgetting factor, based on the prior knowledge of only the incident signal power, the incident source's spatial random walk variance, and the additive noise power. The work presented here further advances a multiple-forgetting-factor (MFF) version of the RLS adaptive tracking algorithm, that requires no prior knowledge of these aforementioned source statistics or noise statistics. Monte Carlo simulations demonstrate the tracking performance and computational load of the proposed algorithms.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:48 ,  Issue: 4 )