By Topic

Model of Photovoltaic Power Plants for Performance Analysis and Production Forecast

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bizzarri, F. ; Dipt. di Elettron. e Inf., Politec. di Milano, Milan, Italy ; Bongiorno, M. ; Brambilla, A. ; Gruosso, G.
more authors

A photovoltaic (PV) plant model is presented. It is based on a detailed electrothermal description of the panels forming strings that, in turn, form the power plant. It accounts for environmental working conditions, such as temperature and wind speed, and specific plant configuration, such as plant topology and power losses due to interconnections. The input variables of the model are the ambient temperature, irradiance, and wind speed. The model derives the working temperature of the panel taking into account also the power conversion performed by the panel; the electrical operating point is determined by simulating the actions done by the maximum power point tracker that operates at plant level. This model has been tested using a large database of experimental data from industrial PV plants characterized by power levels ranging from 250 kW to 1 MW. As shown, the model is capable to predict power production when “fed” by forecast irradiance, ambient temperature, and wind speed data.

Published in:

Sustainable Energy, IEEE Transactions on  (Volume:4 ,  Issue: 2 )