By Topic

Friction in Totally Optical Robotic Finger Oriented on Shear Force Measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Massaro, A. ; Center for Biomol. Nanotechnol. of Arnesano, Ist. Italiano di Tecnol., Lecce, Italy ; Troia, M. ; Spano, F. ; Carbone, G.

Current developments in tactile sensors for robots have shown that they cannot be limited to the detection of normal pressure. For instance, shear force detection is an important issue in the research field oriented on the mechanical characterization. We present an innovative optoelectronic PDMS-Au tactile robotic sensor based on the concept of light coupling in a nanocomposite material due to applied pressure. The friction of two tip layouts is investigated by means of a tribometer. A one-to-one almost inversely linear relationship between the optical transmittivity and the coefficient of friction is observed. This property of the sensor together with its low cost makes it very interesting in those applications where the detection of surface inhomogeneities is the key issue.

Published in:

Sensors Journal, IEEE  (Volume:13 ,  Issue: 2 )