By Topic

Band-Pass Non-TEM Mode Traveling-Wave Electro-Optical Polymer Modulator for Millimeter-Wave and Terahertz Application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fesharaki, F. ; Poly-Grames Res. Center, Ecole Polytech. de Montreal, Montreal, QC, Canada ; Ke Wu

High-frequency electro-optical modulator is critical for enabling signal processing and distribution in the next generation cloud-computing, tele-medicine, and telecommunications. In this paper, substrate integrated waveguide (SIW) is exploited as an alternative fundamental transmission line structure in support of electrical signal for the design and development of millimeter-wave and terahertz (THz) traveling-wave polymeric electro-optic (EO) modulator. Optical and full-wave electromagnetic analyses are carried out and structure optimization is made on the basis of such analyses in order to obtain millimeter-wave transmission characteristics and optical response. Compared to its conventional TEM-mode transmission lines, this bandpass non-TEM mode SIW-based EO modulator presents numerous advantages, namely compact structure, low transmission loss, low driving power, simple packaging and flat optical response over a wide frequency range.

Published in:

Lightwave Technology, Journal of  (Volume:30 ,  Issue: 23 )