By Topic

Peak-to-average power ratio reduction in orthogonal frequency division multiplexing system using differential evolution-based partial transmit sequences scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hung, H.-L. ; Dept. of Electr. Eng., Chien-Kuo Technol. Univ., Changhua, Taiwan ; Huang, Y.-F.

A differential evolution (DE)-based partial transmit sequence (PTS) scheme for peak-to-average power ratio (PAPR) reduction in orthogonal frequency division multiplexing (OFDM) systems has been proposed. PTS techniques can improve the PAPR statistics of an OFDM signals, but the considerable computational complexity for the required search through a high-dimensional vector space is a potential problem for the implementation in practical systems. The DE is an efficient and powerful population-based stochastic search technique for solving optimisation problems over continuous space, which has been widely applied in many scientific and engineering fields. Thus, to reduce the complexity for searching phase weight vector and to improve the PAPR statistics, the authors introduce DE, to search the optimal phase weight factors. The simulation results show that the proposed DE-based PTS obtains an excellent PAPR performance with a low computational complexity.

Published in:

Communications, IET  (Volume:6 ,  Issue: 11 )