Cart (Loading....) | Create Account
Close category search window
 

Fast two-stage spectrum detector for cognitive radios in uncertain noise channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nair, P.R. ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Vinod, A.P. ; Smitha, K.G. ; Krishna, A.K.

An enormous influx of wireless services and devices coupled with inefficient usage of electromagnetic spectrum has led to an apparent scarcity of usable radio bandwidth. Cognitive radio is leading the trend for increasing the spectrum efficiency by utilising the vacancy in the radio spectrum created by absence of the licensed primary user. This paradigm shift can only take place if the means to detect the primary user are well established so that an ecosystem can be created where both primary and secondary users can co-exist without interfering with each other. In this study the authors propose a two-stage detection mechanism which gives an improved performance over conventional single-stage detectors yet optimises the usage of the second stage, thereby reducing the sensing time as compared to conventional two-stage spectrum sensing algorithms. A hardware implementation of the algorithm has also been done to quantify the area and power consumption values. By utilising the second-stage optimally, the algorithm presented in this study helps in reducing the sensing time by 86% as compared with the conventional two-stage detector. By not activating the second stage at high SNRs, the proposed algorithm saves 0.915%W of dynamic power out of a total of 1.09%W, thus effectively reducing the dynamic power consumption by 84%.

Published in:

Communications, IET  (Volume:6 ,  Issue: 11 )

Date of Publication:

July 24 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.