By Topic

Size- and Orientation-Dependent Strain Effects on Ballistic Si p-Type Nanowire Field-Effect Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Baykan, M.O. ; Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL, USA ; Thompson, S.E. ; Nishida, T.

The size- and orientation-dependent uniaxial strain effects on ballistic hole transport in nanowire field-effect transistors are investigated using an sp3d5s*-based tight-binding formalism coupled with a compact electrostatics model and a semiclassical transport model. It is found that the strain-induced reduction of the valence band density of states leads to an increased ballistic hole current. This is explained by the product of a small reduction in hole density and a significant increase in the average ballistic hole velocity under uniaxial compression. While uniaxial compressive strain is beneficial for both 〈110〉 and 〈100〉 devices, the strain response of 〈110〉 nanowires is much larger than their 〈100〉 counterparts. Ultrascaled 〈110〉 nanowires have the highest hole drive current under both strained and unstrained conditions, despite the reduction of strain-induced ballistic hole current enhancement for narrower devices.

Published in:

Nanotechnology, IEEE Transactions on  (Volume:11 ,  Issue: 6 )