By Topic

Building Integrated Photovoltaic System With Energy Storage and Smart Grid Communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sechilariu, M. ; Univ. of Technol. of Compiegne, Compiegne, France ; Baochao Wang ; Locment, F.

The utility grid challenge is to meet the current growing energy demand. One solution to this problem is to expand the role of microgrids that interact with the utility grid and operate independently in case of a limited availability during peak time or outage. This paper proposes, for urban areas, a building integrated photovoltaic (BIPV) primarily for self-feeding of buildings equipped with PV array and storage. With an aim of elimination of multiple energy conversions, a DC network distribution is considered. The BIPV can supply a tertiary building at the same time as PV array may produce power through a hierarchical supervision able to exchange messages with the smart grid and metadata. The hierarchical control is designed as an interface to expand the system ability for advanced energy management control having regard to the grid availability and user's commands. It consists of four layers: human-machine interface, prediction, cost management, and operation. The operation layer, implemented in an experimental platform, takes into account the grid supply power limits and constrains the DC load. The experimental results validate the approach that may be a solution for the future smart grid communication between BIPV and utility grid.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:60 ,  Issue: 4 )