Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Membrane-based design and management methodology for parallel dynamically reconfigurable embedded systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Wattebled, P. ; INRIA Lille-Nord Eur., Univ. de Bretagne Sud, Lorient, France ; Diguet, J.-P. ; Dekeyser, J.

Partial and dynamic reconfiguration provides a relevant new dimension to design efficient parallel embedded systems. However, due to the encasing complexity of such systems, ensuring the consistency and parallelism management at runtime is still a key challenge. So architecture models and design methodology are required to allow for efficient component reuse and hardware reconfiguration management. This paper presents a distributed persistence management model and its implementation for reconfigurable multiprocessor systems on dynamically reconfigurable circuits. The proposed approach is inspired from the well-known component based models used in software applications development. Our model is based on membranes wrapping the systems components. The objective is to improve design productivity and ensure consistency by managing context switching and storage using modular distributed hardware controllers. These membranes are distributed and optimized with the aim to design self-adaptive systems by allowing dynamic changes in parallelism degree and contexts migration. Simulation and synthesis results are given to show performances and effectiveness of our methodology.

Published in:

Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 2012 7th International Workshop on

Date of Conference:

9-11 July 2012