By Topic

Chemically amplified fullerene resists, spin-on fullerene hardmasks and high aspect ratio etching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Frommhold, A. ; Sch. of Chem. Eng., Univ. of Birmingham (UoB), Birmingham, UK ; Yang, D.X. ; Manyam, J. ; Manickam, M.
more authors

As resolution requirements increase there is a need for high performance ultra thin resists, which has led to significant interest in molecular resists. We have previously described a fullerene based resist whose electron beam lithography properties include sparse resolution of ~12 nm, half pitch ~20 nm, sub 5 nm linewidth roughness (LWR), sub 10 μC/cm2 sensitivity, and high etch durability. The material shows extremely wide process latitude and LWR <;2 nm in sparse features. Initial results of exposure via EUV lithography indicate a resolution capability of at least 30 nm half pitch. As resist films have become thinner to mitigate aspect ratio related pattern collapse, etching has become more challenging. We have studied the ICP plasma etching of high-resolution patterns in sub 40 nm thickness films of the fullerene resist. Silicon structures of 20 nm width and more than 100 nm height have been demonstrated. Additionally we have developed a fullerene based spin-on-carbon for use in a tri-layer etching scheme allowing aspect ratios greater than 19:1 to be achieved in room temperature ICP etching of sub 30 nm patterns. The same trilayer scheme has also been deployed for colloidal lithography fabrication of sub 100 nm silicon pillars with aspect ratios >;17:1.

Published in:

Nanotechnology (IEEE-NANO), 2012 12th IEEE Conference on

Date of Conference:

20-23 Aug. 2012