By Topic

Si/SiGe nanoscale engineered thermoelectric materials for energy harvesting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

15 Author(s)
D. J. Paul ; University of Glasgow, School of Engineering, Rankine Building, Oakfield Avenue, G12 8LT, U.K. ; A. Samarelli ; L. Ferre Llin ; J. R. Watling
more authors

Thermoelectric materials are one potential technology that could be used for energy harvesting. Here we report results from nanoscale Ge/SiGe heterostructure materials grown on Si substrates designed to enhance the thermoelectric performance at room temperature. The materials and devices are aimed at integrated energy harvesters for autonomous sensing applications. We report Seebeck coefficients up to 279.5±1.2 μV/K at room temperature with electrical conductivites of 77,200 S/m which produce a high power factor of 6.02±0.05 mWm-1K-2. Methods for microfabricating modules will be described along with techniques for accurate measurements of the electrical conductivity, Seebeck coefficient and thermal conductivity in micro- and nano-scale devices. The present thermoelectric performance is limited by a high threading dislocation density.

Published in:

Nanotechnology (IEEE-NANO), 2012 12th IEEE Conference on

Date of Conference:

20-23 Aug. 2012