By Topic

Image zooming using directional cubic convolution interpolation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhou, D. ; Sch. of Control & Comput. Eng., North China Electr. Power Univ., Beijing, China ; Shen, X. ; Dong, W.

Image-zooming is a technique of producing a high-resolution image from its low-resolution counterpart. It is also called image interpolation because it is usually implemented by interpolation. Keys' cubic convolution (CC) interpolation method has become a standard in the image interpolation field, but CC interpolates indiscriminately the missing pixels in the horizontal or vertical direction and typically incurs blurring, blocking, ringing or other artefacts. In this study, the authors propose a novel edge-directed CC interpolation scheme which can adapt to the varying edge structures of images. The authors also give an estimation method of the strong edge for a missing pixel location, which guides the interpolation for the missing pixel. The authors' method can preserve the sharp edges and details of images with notable suppression of the artefacts that usually occur with CC interpolation. The experiment results demonstrate that the authors'method outperforms significantly CC interpolation in terms of both subjective and objective measures.

Published in:

Image Processing, IET  (Volume:6 ,  Issue: 6 )