By Topic

Visual Tracking in Background Subtracted Image Sequences via Multi-Bernoulli Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hoseinnezhad, R. ; Sch. of Aeropspace, RMIT Univ., Melbourne, VIC, Australia ; Ba-Ngu Vo ; Ba-Tuong Vo

This correspondence presents a novel method for simultaneous tracking of multiple non-stationary targets in video. Our method operates directly on the video data and does not require any detection. We propose a multi-target likelihood function for the background-subtracted grey-scale image data, which admits multi-target conjugate priors. This allows the multi-target posterior to be efficiently propagated forward using the multi-Bernoulli filter. Our method does not need any training pattern or target templates and makes no prior assumptions about object types or object appearance. Case studies from the CAVIAR dataset show that our method can automatically track multiple targets and quickly finds targets entering or leaving the scene.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 2 )