By Topic

Toward Robot-Assisted Neurosurgical Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Motkoski, J.W. ; Schulich Sch. of Eng., Univ. of Calgary, Calgary, AB, Canada ; Fang Wei Yang ; Lwu, S.H.H. ; Sutherland, G.R.

Despite the potential increase in precision and accuracy, laser technology is not widely used in neurological surgery. This in part relates to challenges associated with the early introduction of lasers into neurosurgery. Considerable advances in laser technology have occurred, which together with robotic technology could create an ideal platform for neurosurgical application. In this study, a 980-nm contact diode laser was integrated with neuroArm. Preclinical evaluation involved partial hepatectomy, bilateral nephrectomy, splenectomy, and bilateral submandibular gland excision in a Sprague-Dawley rat model (n = 50). Total surgical time, blood loss as weight of surgical gauze before and after the procedure, and the incidence of thermal, vascular, or lethal injury were recorded and converted to an overall performance score. Thermal damage was evaluated in the liver using tissue samples stained with hematoxylin and eosin. Clinical studies involved step-wise integration of the 980-nm laser system into four neurosurgical cases. Results demonstrate the successful integration of contact laser technology into microsurgery, with and without robotic assistance. In preclinical studies, the laser improved microsurgical performance and reduced thermal damage, while neuroArm decreased intra- and intersurgeon variability. Clinical studies demonstrate dutility in meningioma resection (n = 4). Together, laser and robotic technology offered a more consistent, expedient, and precise tool for microsurgery.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:60 ,  Issue: 4 )