By Topic

MMSE Estimation of Sparse Lévy Processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kamilov, U. S. ; Biomedical Imaging Group, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland ; Pad, P. ; Amini, A. ; Unser, M.

We investigate a stochastic signal-processing framework for signals with sparse derivatives, where the samples of a Lévy process are corrupted by noise. The proposed signal model covers the well-known Brownian motion and piecewise-constant Poisson process; moreover, the Lévy family also contains other interesting members exhibiting heavy-tail statistics that fulfill the requirements of compressibility. We characterize the maximum-a-posteriori probability (MAP) and minimum mean-square error (MMSE) estimators for such signals. Interestingly, some of the MAP estimators for the Lévy model coincide with popular signal-denoising algorithms (e.g., total-variation (TV) regularization). We propose a novel non-iterative implementation of the MMSE estimator based on the belief-propagation (BP) algorithm performed in the Fourier domain. Our algorithm takes advantage of the fact that the joint statistics of general Lévy processes are much easier to describe by their characteristic function, as the probability densities do not always admit closed-form expressions. We then use our new estimator as a benchmark to compare the performance of existing algorithms for the optimal recovery of gradient-sparse signals.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 1 )