By Topic

The Impact of Access Probabilities on the Delay Performance of Q-CSMA Algorithms in Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ghaderi, J. ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA ; Srikant, R.

It has been recently shown that queue-based carrier sense multiple access (CSMA) algorithms are throughput-optimal. In these algorithms, each link of the wireless network has two parameters: a transmission probability and an access probability. The transmission probability of each link is chosen as an appropriate function of its queue length, however the access probabilities are simply regarded as some random numbers since they do not play any role in establishing the network stability. In this paper, we show that the access probabilities control the mixing time of the CSMA Markov chain and, as a result, affect the delay performance of the CSMA. In particular, we derive formulas that relate the mixing time to access probabilities and use these to develop the following guideline for choosing access probabilities: Each link i should choose its access probability equal to 1/(di+1), where di is the number of links that interfere with link i. Simulation results show that this choice of access probabilities results in good delay performance.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:21 ,  Issue: 4 )