By Topic

A novel spectrum occupancy anomaly detection method based on time series analysis theory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang Lei ; Sch. of Electron. & Inf. Eng., Beihang Univ., Beijing, China ; Xie Shuguo

Efficient spectrum management and dynamic spectrum access networks heavily rely on accurate statistics of spectrum utilization and temporal behaviour modelling of spectrum occupancy. In this paper, we propose a novel method for spectrum occupancy time-varying characteristics analysis, which includes modelling and anomaly detection of dynamic spectrum occupancy data. First, through the procedure of preprocessing and statistical test for measured spectrum data, we demonstrate the conditional heteroskedasticity existed in spectrum occupancy time-varying series. Furthermore, we present an EGARCH (exponential generalized auto regressive conditional heteroskedasticity) model to fit the variance of spectrum occupancy. Finally, we present an iteration algorithm to detect spectrum occupancy anomaly, and the empirical results show that the proposed method can identify the outliers of spectrum occupancy series without the need for a prior knowledge.

Published in:

Electromagnetics; Applications and Student Innovation (iWEM), 2012 IEEE International Workshop on

Date of Conference:

6-9 Aug. 2012