Cart (Loading....) | Create Account
Close category search window
 

The design of highly-parallel image processing systems using nanoelectronic devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Fountain, T.J. ; Dept. of Phys. & Astron., Univ. Coll. London, UK

As minimum device dimensions are reduced from a few hundred nm to a few nm the number of devices on a single small chip will rise from one million to ten billion. However, as dimensions are reduced below approximately 100 nm, device characteristics will all differ from those of current devices. The anticipated packing density (and performance) of such nanoelectronic devices could be usefully applied in the achievement of highly-parallel, highly-compact, computer systems but, because of the changes anticipated in device characteristics, the designs of such systems need to be reevaluated. This paper describes the re-evaluation of the data-parallel SIMD type of system in the light of a perceived problem concerning the difficulty of conveying signals over long distances on nanoscale wires. To overcome this problem, a novel architecture, the Propagated Instruction Processor, has been developed which incorporates design elements from SIMD arrays, pipelines and systolic architectures. Examples of circuit elements, suitable for incorporation in such an architecture, implemented in QCA components are presented together with the results of simulations which demonstrate the potential packing density and performance of such systems

Published in:

Computer Architecture for Machine Perception, 1997. CAMP 97. Proceedings. 1997 Fourth IEEE International Workshop on

Date of Conference:

20-22 Oct 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.